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ABSTRACT

Hyperspectral Images (HSI) are usually affected by different type of noises such as Gaussian and non-Gaussian.
The existing noise can directly affect the classification, unmixing and superresolution analyses. In this paper,
the effect of denoising on superresolution of HSI is investigated. First a denoising method based on shearlet
transform is applied to the low-resolution HSI in order to reduce the effect of noise, then the superresolution
method based on Bayesian sparse representation is used. The proposed method is applied to real HSI dataset.
The obtained results of the proposed method in comparison with some of the state-of-the-art superresolution
methods show that the proposed method significantly increases the spatial resolution and decreases the noise
effects efficiently.
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1. INTRODUCTION

Nowadays HSI have been used in many practical applications such as mining, agriculture, astronomy and etc. The
spectral resolution of HSI is higher than multispectral images (MSI), this means that classification or unmixing
analysis, using HSI instead of MSI leads to more precise results. However, the spectral resolution of HSI is higher
than MSI, because of sensor limitations its spatial resolution is not significant. In order to solve this problem,
different superresolution methods have been introduced recently. Most of the superresolution methods are based
on the fusion of HSI with high spatial resolution images such as MSI. These fusion methods can be generally
divided into two main groups: spectral unmixing based and sparse representation based approaches.

For example, an efficient method based on sparse representation is introduced in.' In this method, a Bayesian
sparse (BS) concept is used. First, the principal component analysis (PCA) is applied to the existing low-
resolution HSI (LRHSI) in order to reduce the spectral dimensionality. After that, a proper dictionary is
constructed using LRHST and MSI. Then, the superresolution problem is solved using an alternative optimization
problem. The other sparse representation based fusion is introduced in.? This method considers the non-local
self-similarity of spectra. In this method a spectral dictionary is constructed from LRHSI and similar pixels in
MSI are grouped first, and after that a spatial dictionary is created. Finally, high-resolution HST (HRHSI) is
produced using an iterative back-projection method.

In spectral unmixing (SU) based fusion methods, the original images are decomposed into endmember and
abundance fraction matrices.®> The endmember matrix is extracted from the LRHSI and the abundance fractions
are estimated from MSI. One of the popular method is coupled non-negative matrix factorization (CNMF).4 Tt
is applied in order to alternately update the abundance fractions from the MSI and the endmember spectra from
the LRHSI. Another example is a fusion method based on unsupervised spectral unmixing.? In this method,
the ill-posed fusion problem is solved by maximizing the joint posterior distribution with respect to endmembers
and abundance fractions.

Recently a superresolution method based on the combination of spectral unmixing and sparse coding (SUSC)®
is introduced. This method shows better performance than the spectral unmixing” and sparse coding® methods.
Superresolution using spectral unmixing and Bayesian sparse representation (SUBS)? is another example of
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combination methods. In this method, spectral unmixing is applied to extract the endmember matrix from
LRHSI and the abundance fraction are obtained from MSI by solving an optimization fusion problem.

Due to the sensor limitation, the LRHSI are affected by different type of noises e.g. Gaussian noise and
non-Gaussian such as Spike noise (salt-and-pepper noise). Atmospheric absorption and instrumental noise cre-
ate Gaussian noise. Moreover, for most sensors the Gaussian noise power varies among bands. Spike noise
appears when the sensors have unpredictable calibration.'® The existing noise causes the degradation of HSI
and hinders the effectiveness of subsequent HSI processing task, e.g. fusion, spectral unmixing,'! classification!?
and segmentation.'® HSI denoising is a well-studied problem. For example'*!® remove the mixture of Gaussian
and Spike noises.

Recently we introduced a noise reduction method for HSI based on shearlet transform (ST).16 In this method,
first, the bands are divided into two groups: bands dominated by low-level noise (LN) and bands containing
mixed noise (MN) such as high-level Gaussian noise and Spike noise, based on the spectral correlation. After
that 2D shearlet transform is applied to all bands. The LN bands are denoised using Bayesian thresholding and
the effect of noise in MN bands are reduced using the details information of shearlet transform coefficients from
neighboring LN bands.

In this paper because the adverse effect of MN is stronger than LN, therefore we investigated the effect of
noise reduction of high-level noise on fusion of LRHSI and MSI by using a combination of ST and BS, the
proposed method (STBS) simultaneously decreases the effect of noise and increases the spatial resolution. The
proposed method is applied to real HSI and MSI dataset and compared with the spectral unmixing base method
CNMEF,* the sparse representation method BS! and the combined method SUSC.6

The rest of this paper is organized as follows. In Section 2, the proposed algorithm is described. Section 3
presents the experimental results and Section 4 concludes the paper.

2. PROPOSED METHOD

In this section first we give the definitions and notations used throughout the paper. In this paper, tensors are
donated by capitalized and calligraphic letters e.g. A. Matrices are denoted by capitalized boldface letters, e.g.
A. Vectors are denoted by boldface lower-case letters e.g. a. Scalars are denoted by lower-case letters e.g. a.
The proposed method (STBS) is explained in detail in the following:

2.1 Shearlet transform

Classical wavelets are popular to create an optimal approximation but do not optimally represent multivariate
functions such as images that are typically included anisotropic features such as edges. Recently shearlet trans-
form has been introduced. It can optimally provide sparse representation for a large class of multidimensional
data and guide to improvement in many image processing such as denoising'® and image fusion.!”

In this paper, a special type of discrete shearlet transform is used, called non-subsampled shearlet transform
(NSST). This transform is shift invariant and well known in image denoising. The NSST contains two main
steps. First: non-subsampled pyramid (NSP) filter banks. These filters do not include any upsampling and
downsampling filters. In fact, the NSP filter banks create a multiscale decomposition of the original image into
high-frequency subbands and low-frequency subbands. Second: non-subsampled shearing (NSS) filter banks
accomplish the directional filtering in the spatial domain. The NSS decomposes the high-frequency subbands
into directional subbands. The filter banks are iteratively applied. At each iteration, the obtained low-frequency
subband is again decomposed into a lower scale high-frequency and low-frequency subbands (see'S for more
details).

LRHSI data contaminated by mixed noise are denoted by Yy, € R¥1*%2%br wwhere (i x i) are the total number
of pixels in the spatial direction of LRHSI. by, is the number of spectral bands of LRHSI. LRHSI can be modeled
as:

Vi =Z+8+Ny (1)
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(8)

Figure 1: (a) Band 82 of the Pavia groundtruth image. (b) First band of MSI. (¢) Noisy band 82 of LRHSI;
Band 82 of HRHSI obtained by: (d) CNMF; (e) SUSC; (f) BS; (g) Proposed method (STBS)

where Z € R *¥%2%br ig the clean LRHSI, S € R XX and Ny € R¥*2Xr gre sparse noise and Gaussian
noise respectively. The spares noise includes non-Gaussian noise. In fact, sparse noise refers to the noise which
corrupts only a few pixels in the image with strong level.

As it is mentioned the impact of denoising of high-level noise on fusion of HSI and MSI is very important.
In the denoising procedure using shearlet transform first the images are divided into LN and MN bands based
on spectral correlation. The LN bands are denoised using BayesShrink thresholding. After that, the recovered
shearlet coefficients of adjacent bands are fused into MN detail subbands.

In this paper first the effect of high Gaussian noise on fusion of HSI and MSI is investigated. Second, we also
added Spike noise with level % as a sparse noise, where d is the probability that reflectance value changes to zero
or one.

After denoising the existing LRHSI, an efficient fusion method "BS” is applied to MSI and LRHSI. This
fusion process will be explained in the following.

2.2 BS fusion

The clean LRHSI (Z) in Eq.1 can be considered as a blurred and downsampled of HRHSI. In fact, LRHSI have
high-spectral and low-spatial resolutions. It can be modeled as follows: '3

7 = YBD7Z c Rbhxnh,Y = Rbhxn,B = Rnxn’D c Rk (2)

where nj, is the total number of LRHSI pixels (n, = i1 X i3); n is the total number of HRHSI pixels; Y is
the HRHSI; B is a spatial blurring matrix; D is a downsampling matrix;

The Eq.2 substitutes in Eq.1, in this case we will have:

Yu =YBD + S+ Ny;Yg € R*"*"™ § € R*"*"» Ny € R™*"™ (3)
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Figure 2: (a) Band 76 of the Pavia groundtruth image. (b) First band of MSI. (c¢) Noisy band 76 of LRHSI;
Band 76 of HRHSI obtained by: (d) CNMF; (e) SUSC; (f) BS; (g) Proposed method (STBS)

It is noteworthy to mention that Z, Yz, S, Ny in Eq.2 & 3 are denoted the matrix version of these symbols
in comparison with Eq.1.

Assume that MSI from the same scene of LRHSI is also available and co-registered. MSI usually have
high-spatial and low-spectral resolutions. MSI can be considered as follows:

Ya = RY + Npyg; Yar € RO»Xmm R € R0nXbr Np o € RO XMmepn s nys b, < by, (4)

where Yas is MSI; R is the spectral response of the multispectral sensor; Njss is additive Gaussian noise;
Ny, 1s the total number of pixels in MSI which is equal to HRHSI (n,,, = n); by, is the number of MSI bands.

As it is mentioned the MN noise degrades the HSI a lot and the BS fusion method is sensitive to the existing
noise. Therefore, the noisy LRHSI (Yg) first is denoised by NSST:!6

Yz = NSST(Y) (5)

It is noteworthy to mention that the effect of Np;g in comparison to ! Ny is negligible. Therefore, the NSST
is only applied to Yz. After that the BS fusion method is applied to Yz and Yj,.

As it is mentioned HSI are generally spectrally dependent and can be projected into lower spectral dimension.
The following model for HRHSI (Y’) can be considered:!

Y = HU; H € R%*% U € R%*"™ b < b, (6)

where H is an orthogonal matrix, U is the projection of matrix Y onto the subspace spanned by the columns
of matrix Y. By replacing the Eq.6 into Eqs.3 & 5 we will have:

Yy ~ HUBD (7)
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Yy = RHU + Ngs (8)

In this paper H is first obtained by applying PCA to Yg and it is considered as constant. NBW the U matrix
should be estimated from LRHSI and MSI. A rough estimation for U can be calculated using Yz and Yy (seel®
for more details). After that the maximum a posterior (MAP) estimator of U using an optimization framework
to solve the fusion problem is considered. The mentioned optimization problem is usually an ill-posed inverse
problem which requires a regularization term in order to convert it into a well-posed inverse problem. Sparse
coding (SC) is used as a regularizer. In SC, the dictionary is constructed from existing LRHSI and MSI using
online dictionary learning (ODL).2° The sparse code matrix is calculated by orthogonal matching pursuit.?!
After that the U and SC matrices are obtained through an interactive optimization method. In this case the
optimization with respect to (w.r.t.) U, conditional on SC can be efficiently solved with the split augmented
Lagrangian Shrinkage algorithm (SALSA).?2 The optimization w.r.t. sparse code conditional on U can be easily
computed using least square (LS) regression (see” for more details). The pseudo code of the proposed algorithm
is briefly given by Algorithm.1.

Algorithm 1 STBS method

Input: Yy, Y, B, D, dictionary parameters
1. Denoise Yz using NSST — ?; = NSST(Yn);
2. Fusion (Y/xH/,YM) using BS;

Output: HRHSI(Y)

3. EXPRIMENTAL RESULTS
3.1 Quality Metrics

In order to validate the quality of the obtained HRHSI (}), four image quality measurements have been calcu-
lated, based on the comparison with the high-resolution groundtruth HSI ()g)

1. The peak signal-to-noise ratio (PSNR) which measures the power of reconstructed signal.

by, Max?
> it 10[0910(%39

PSNR =
b,
1
MSE = —> (ya., — vij)’ (9)
N =

Where Max; is the maximum value of the i;; band; yg
and reconstructed image respectively.

.., and y; ; are the jy, pixel of the iy, band of groundtruth
2. The spectral angular mapper (SAM) which measures the spectral distortion of the final result in comparison
with groundtruth.
y:,j? /yG: i
ly.jll2llye. Il

1
- 1
SAM -~ jg_l arccos( ) (10)

where Yo, and y. ; is the spectrum of the ji;, pixel of the groundtruth and reconstructed image respectively.

3. The error relative global-dimensional synthesis index (ERGAS) which measures the spectral distortion of
reconstructed HSI (HRHSI).

b

" MSE(y, .,
ERGAS = 1001 iz (-’QJz,. Ya,.)
A\ on i Fye, .

(11)

where k is the ratio the spatial resolution between LRHSI and high-resolution MSI; y¢,  and y, . are the i,
band of groundtruth and reconstructed image respectively; Pyg, . 1s the mean of yg, .
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4.The cross correlation (CC), which is a parameter to measure the spatial distortion.

b
1
CcC = EZ CCS(yg, .. v..)
Yi=1

cCS — 22721 (yGi.j - ﬂycw )(U7] - ﬂyi,:)

\/2?21 (e, — Hya, )2 (Yij — Hy,.)?

(12)

where f,, . is the mean of y, ..

3.2 Real Datasets

The proposed method (STBS) has been applied to a real HSI dataset. This dataset was acquired by the reflective
optics system imaging spectrometer (ROSIS) optical sensor over the urban area of the university of Pavia, Italy*.
The image size is 610 x 340 x 115. The water absorption bands [1-10] and [104-115] are removed and 93 bands are
retained. For simulation, groundtruth subimage is selected with size 240 x 240 x 93. For this dataset, MSI of the
same scene does not exist. Therefore, MSI of four bands is generated by filtering the HSI with the IKONOS-like
reflectance responses which is scaled with size 240 x 240 x 4. An LRHSI has been constructed by applying a 5 x 5
Gaussian spatial filter with o = 2.5 of spatial directions to each band of groundtruth HSI and downsampling by
a factor of four in both horizontal and vertical directions this leading to a LRHSI with size 60 x 60 x 93.

3.3 Parameter Setting

In order to investigate the effect of denoising on fusion process, first high Gaussian noise is randomly added to
30 spectral bands of LRHSI. To obtain variable noise from band to band, the standard deviation ¢ are randomly
chosen with the interval [0.2, 0.4]. Second, the Spike noise (non-Gaussian) with level ¢ is added to the previous
noisy bands. Where d is the probability that a reflectance value changes to zero or one, was taken in the interval
0.2 < d £ 0.4 for each band. In order to denoise, NSST with three level decomposition is used and the number
of shearing direction is chosen to be 16,8 and 4 at scales 1, 2, 3 respectively.

In BS fusion method, the value of A has been set empirically to 25. For the ODL algorithm in this paper 3481
patches of size 6 x 6 are used, and the number of atoms is 256. The proposed algorithm (STBS) is compared
to the following algorithm the spectral unmixing based fusion method CNMF,* the sparse representation based
fusion BS,! combined method SUSC.6 In CNMF, the maximum number of iterations in the linear and outer
loops are selected as 100 and 1 respectively. In SUSC, the patch size is 8 x 8; The number of atoms is 332 and
Ais 1.

3.4 Fusion Results

The proposed method is compared with some of the state-of-the-art algorithms. Table.1 displays quality measures
for high-level Gaussian and mixed noises. The fusion results obtained from different algorithms are depicted in
Figures.1, 2 for both noises (Bands 82 and 76 are affected by high Gausssian noise and Spike noise respectively).
From the obtained results, it can be seen that the proposed approach outperforms than the other fusion methods.

The reconstructed images by the proposed method (STBS) are visually very close to the groundtruth. As it
shown in Table.1 the superior performance of the proposed method can be contributed to an improve spatial
resolution (high PSNR and CC values) and decrease spectral distortion (low SAM and ERGAS values) compared
to the CNMF, SUSC and BS methods. In fact, CNMF couldn’t remove the noise effect (especially mixed noise).
It would appear that the fused image by the SUSC contains more noise than BS. Moreover, it is clearly seen
that the proposed denoising-fusion (STBS) method remove the noise as much as possible while preserving the
important spatial information such as edges very well and as it is shown the fusion quality is also visually better
than other methods.

The algorithms computed on a system with Intel(R) Core(TM) i7 CPU (3.60 GHz), 64 GB RAM, 64-bit
operating system. All computing times for the proposed method and the other algorithm are also calculated.

*[Online]. Available: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Table 1: Quality indices for obtained fusion results induced by different type of noises

Method High Gaussian noise Mixed noise Time
cthods "PSNR| SAM | ERGAS | CC | PSNR| SAM | ERGAS | CC )
(dB) (rad) (dB) (rad)
CNMF* | 32.45 0.320 9.62 0.896 33.53 0.334 19.73 0.884 9.92
SUSCS 32.11 0.246 14.69 0.924 30.80 0.277 11.63 0.925 156.98
BS! 35.49 0.125 3.44 0.979 33.34 0.151 4.01 0.971 56.85
STBS 41.81 | 0.069 2.28 0.987 | 40.34 | 0.040 1.33 0.996 56.09
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Figure 3: Reconstructed spectrum using different fusion methods (high Gaussian noise)

The required computing time for the proposed method is close to BS and the CNMF takes the lowest time.
SUSC requires a considerable amount of time.

Figures.3 & 4 show the spectra pixel [10, 1] (it is the spectrum of meadows) in the ground truth and
The spectral distortion value is the lowest in the proposed method. Therefore, the
reconstructed HRHSI have simultaneously a high spatial and spectral resolutions compared to the other methods.

reconstructed images.

In order to demonstrate the effect of the denoising and fusion on further analysis, the impact of the proposed
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Figure 4: Reconstructed spectrum using different fusion methods (MN)

method on classification accuracy is also investigated. The subset of Pavia dataset contains a groundtruth
(labeled training set are available), including six classes (asphalt, meadows, trees, painted metal sheets, self-
blocking bricks and shadow). Ten samples of the available labeled samples for each class are randomly selected
for training. The support vector Machin (SVM)?23 classifier is used in order to classify the fused datasets. The
average accuracy (AA) for each class and overall accuracy (OA) and kappa coefficient of the classified fused
images for various fusion methods are reported in Table.2. Since SVM is not robust, for each fused data,
accuracy measurements (OA, AA and kappa) are calculated 40 times and the reported values are the averaged
measurements over all values. Figures.5 & 6 show the obtained classification maps. The applied SVM algorithm is
taken from the LIB-SVM toolbox?* by using the Gaussian kernel with five fold cross-validation. The classification
maps for each fused method are depicted in figures.5 & 6 in order to visually compare the classification results
for HRHSI affected by high Gaussian noise and MN respectively.

4. CONCLUSIONS

In this paper, the effect of HSI denoising on fusion of LRHSI with MSI is investigated. First, the existing
LRHSI is denoised using shearlet transform method. After that, the fusion problem is solved by Bayesian sparse
method. The visual and qualitative fusion results show that the proposed method (STBS) significantly enhances
the spatial resolution of HSI with low spectral distortion compared to state-of-the-art reconstruction based on
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Table 2: SVM classification results

Class Data AA (high Gaussian noise) o, AA (MN) (9
Name Train Test | CNMF SUSC BS STBS | CNMF SUSC BS STBS
Number
Asphalt 10 2583 71.97 84.89 80.55 87.19 55.32 80.19 81.96 87.48
1
Meadows 10 4929 75.42 86.97 84.84 91.10 69.76 85.72 81.97 91.04
2
Trees 10 1017 68.69 84.69 78.26 89.55 48.36 84.90 82.99 89.20
3
Pianted 10 1118 63.94 96.40 92.32 86.10 46.67 89.92 89.37 89.00
4 metal
sheets
Self 10 1105 86.64 90.77 86.90 95.24 63.52 89.12 87.67 94.25
5 block-
ing bricks
Shadow 10 155 98.42 99.08 96.63 99.37 96.82 98.11 92.77  99.37
6
OA (%) 74.26 87.79 84.35 90.06 61.73 85.28 83.56 90.26
Kappa 0.656 0.833 0.788 0.863 0.483 0.800 0.779 0.866

L

(c) SUSC

(@)

(b) CNMF
Figure 5: Classification maps of different classified HRHSI (high Gaussian noise)

spectral unmixing and sparse code in the presence of high Gaussian noise and Spike noise. The performance of
the other fusion methods is decreased by mixture noise a lot. Therefore, the denoising of HSI is suggested before

fusion of HSI and MSI.
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